$$C_{ox} = \frac{\epsilon_{ox}}{t_{ox}} = \frac{34.5 \text{ pF/m}}{4 \text{ nm}} = 2.30 \text{ fF/} \mu\text{m}^2$$

$$\mu_n = 550 \text{ cm}^2 / \text{VS}$$

$$k_n' = \mu_n C_{ox} = 127 \ \mu \text{A} / \text{V}^2$$

$$I_D = \frac{1}{2} k_n \frac{W}{L} V_{oV}^2 = 0.2 \text{ mA}, \frac{W}{L} = 20$$

$$\therefore V_{OV} = 0.40 \text{ V}.$$

$$V_{Ds, \, \mathrm{min}} = V_{OV} = 0.40 \, \, \mathrm{V}$$
, for saturation

5.5 The transistor size will be minimized if W/L is minimized, since W/L appears in the equations that must be satisifyed, we can minimize (W/L). Clearly we want to minimize L by using the smallest feture size.

 $L = 0.18 \,\mu \text{m}$

$$r_{DS} = \frac{1}{k_n'(W/L)(\upsilon_{GS} - V_I)}$$

$$r_{DS} = \frac{1}{k_n'(W/L)\upsilon_{OV}}$$

Two conditions need to met for v_{OV} and r_{DS} Condition 1:

$$r_{DS,1} = \frac{1}{400 \times 10^{-6} (W/L) v_{OV,1}}$$
$$= 200 \Rightarrow (W/L) v_{OV,1} = 12.5$$

Condition 2:

$$r_{DS,2} = \frac{1}{400 \times 10^{-6} (W/L) v_{OV,2}}$$

$$= 1000 \Rightarrow (W/L)v_{OV,2} = 2.5$$

If condition 1 is met, condition 2 will be met since the over-voltage can always be reduced to satisfy this requirement. For condition 1, we want to decrease *W/L* as much as possible (so long as it is greater than or equal to 1), while still meeting all of the other constraints.

This requires our using the largest possible $v_{GS,1}$ voltage. $v_{GS,1} = 1.8$ Volts, so $v_{GS,1} = 1.4$ Volts that

$$W/L = \frac{12.5}{v_{OV,1}} = \frac{12.5}{1.4} \approx 8.93$$

Condition 2 now can be used to find $v_{GS,2}$

$$v_{OV,2} = \frac{12.5}{W/L} = \frac{2.5}{12.5/1.4} = 0.28$$

$$\Rightarrow v_{GS, 2} = 0.68 \text{Volts} \Rightarrow 0.68 \le v_{GS} \le 1.8$$